Fourth Report of the Committee on Atomic Weights of the International Union of Chemistry.

THE following report of the Committee covers the twelve-month period, September 30, 1932, to September 30, 1933.*

In view of the fact that a Committee on Atoms of the International Union has been established, developments in the field of isotopes are now and hereafter will be reported only where they may be of influence on the table of atomic weights.

Changes in the table of atomic weights have been made in the following cases :

	1933.	1934.		1933.	1934.
Potassium	39.10	39.096	Tellurium	127.5	127.61
Arsenic	74.93	74.91	Cæsium	132.81	132.91
Selenium	79.2	78.96	Ytterbium	173.5	173.04
Indium	114.8	114.76	Osmium	190.8	191.5

CARBON.—Woodhead and Whytlaw Gray (J., 1933, 846) have compared the densities of oxygen and carbon monoxide with an improved form of micro-displacement balance. Oxygen was prepared from potassium permanganate and potassium chlorate, carbon monoxide from formic acid and potassium ferrocyanide. Both gases were thoroughly dried and fractionally distilled. The corrected ratios of balancing pressures were found as follows:

		Approxima	te pressures.	
Series.	Temp.	O ₂ .	CO.	Ratio.
I	0°	$382 \cdot 8$	$437 \cdot 2$	0.87516
II	19.8	181.9	207.8	0.87523
III	19.8	361.9	413.5	0.87514
IV	19.8	572.3	654.0	0.87500

From the last three ratios the limiting value is found by linear extrapolation against the pressure, while from that of Series I a limiting value is found with the use of the ratio $(PV)_{0}/(PV)$, for oxygen (1.00094) and carbon monoxide (1.00048).

Series.	Series.	
II and III II and IV	 3 III and IV 4 I	

The average molecular weight of carbon monoxide calculated from the ratios is 28.011 and the atomic weight of carbon 12.011.

This value shows, again, that the atomic weight of carbon is higher than the value 12.00 entered in the table. If one assumes with Tate, Smith, and Vaughan (Physical Rev., 1933, 43, 1054) and also with Jenkins and Ornstein (Proc. K. Akad. Wetensch. Amsterdam, 1933, 35, 1212) a 1 per cent. participation of C¹³, there results, considering the packing fraction $+3 \times 10^{-4}$, estimated by Aston, likewise the value 12011. To be sure, the value 12.0054 determined by Cooper and Maass (II. Internat. Rep., p. 4) from the density of CO₂, and the value 12.006 determined by Moles and Salazar (III. Internat. Rep., p. 3) from the density of CO, are somewhat lower, and it would therefore be advisable to refrain from making a correction in the table until new confirmations have been obtained (see Cawood and Patterson, p. 511).

NITROGEN.-Moles and Batuecas (Anales Soc. Espan. Fis. Quim., 1932, 30, 876) correct

* Authors of papers bearing on the subject are requested to send copies to each of the five members of the Committee at the earliest possible moment.

Prof. G. P. Baxter, Coolidge Laboratory, Harvard University, Cambridge, Mass., U.S.A.; Mme. P. Curie, Professeur à la Sorbonne, Institut du Radium, 11, rue Pierre-Curie, Paris (5e), France; Prof. O. Hönigschmid, Sofienstrasse 9, Munich, Germany; Prof. P. Lebeau, Faculté de Pharmacie, 4, Avenue de l'Observatorie, Paris (6°), France; Prof. R. J. Meyer, Landshuterstrasse 11-12, Berlin W 30, Germany.

their results for the density of ammonia previously published (see report for 1931). The corrected densities are :

1	atmosphere	0.77170	1/2 atmosphere	0.76573
2/3	,,	0.76760	1/3 ,,	0.76380

The authors calculate $1 + \lambda$ to be 1.0157, and the atomic weight of nitrogen to be 14.007, on the assumption that the deviation from Boyle's law is a linear function of the pressure.

Dietrichson, Bircher, and O'Brien (J. Amer. Chem. Soc., 1933, 55, 1) and Dietrichson, Orleman, and Rubin (*ibid.*, 1933, 55, 14) have determined the density of ammonia at different pressures. Synthetic ammonia was purified by distillation over sodium and fractionation. The density determinations were made by filling globes (5 litre and 1 litre) at 0° and measured pressure and condensing the gas in pyrex capsules which were sealed and weighed. Adsorption was eliminated by thorough baking of the glass in the case of the 1-litre globe. Less satisfactory results were obtained with the 5-litre globe, so that only the results with the 1-litre globe are given in the following table.

The Density of Ammonia.

1 Atmosphere.	2/3 Atmosphere.	1/3 Atmosphere.
$0.771\overline{2}62$	0.511590	0.254559
0.771273	0.211631	0.254575
0.771239	0.211609	0.254598
0.771262	0.511613	0.254576
	0.511586	
	0.511599	
0.771259	0.511602	0.254576

Calculated by Guye's secondary difference or quadratic method, the limiting density of ammonia is found to be 0.76022 and the atomic weight of nitrogen 14.017. The authors from a quadratic equation of state find 14.007, but feel that extrapolation to limiting dilution is too uncertain with ammonia to afford a reliable method for finding the atomic weight of nitrogen.

SILICON.—Weatherill and Brundage (J. Amer. Chem. Soc., 1932, 54, 3932) have determined the ratio of silicon tetrachoride to silicon dioxide. Silicon tetrachloride was purified by prolonged fractional distillation in all-glass exhausted apparatus. Analysis of fractions sealed in silica bulbs during the course of the purification was effected by breaking the bulb under dilute hydrochloric acid in a weighed platinum crucible and gradually heating the product to constant weight at about 1100°. Weights are corrected to vacuum. The number of the fraction indicates the number of fractional distillations to which the material had been subjected.

The Atomic Weight of Silicon.

			Ratio	
Fraction.	Wt. of SiCl ₄ .	Wt. of SiO ₂ .	SiO_2 : SiCl ₄ .	At. Wt. Si.
13	$2 \cdot 11017$	0.74587	0.353464	28.044*
13	2.53146	0.89563	0.323800	28.132*
15	4.59854	1.62648	0.353695	28.104
15	2.86802	1.01447	0.353718	28.110
15	3.01210	1.06731	0.353754	28.120
17	2.90424	1.02706	0.353642	28.090
17	$2 \cdot 55431$	0.90357	0.353743	28.117
17	$2 \cdot 80323$	0.99175	0.353788	28.129*
17	2.92542	1.03462	0.353665	28.096
18	3.38901	1.19857	0.353664	28.096
18	$2 \cdot 10540$	0.74458	0.353653	28.093
		Average	0.353700	28.103

The asterisked analyses were subject to slight experimental uncertainty, but their omission does not change the average. The final result is higher than that found by Baxter, Weatherill, Holmes, and Scripture, 28.063, but agrees well with that found by Hönigschmid and Steinheil, 28.105.

SULPHUR.-Klemenc and Bankowski (Z. anorg. Chem., 1932, 208, 348) have prepared hydrogen sulphide by synthesis from the elements and fractional distillation. The density was obtained by a combination of the globe and volumeter methods, the gas being measured in a 2-litre globe and weighed after transfer to a somewhat smaller one. Determinations were carried out with carbon dioxide for purposes of comparison.

Density. CO ₂ .	Density. H ₂ S.	Density. CO ₂ .	Density. H ₂ S.		Density. CO ₂ .	Density. H ₂ S.
1.9762 1.9766	$1.5359 \\ 1.5383$	1.9771 1.9765	1.5367 1.5360		1.9770 1.9769	$1.5362 \\ 1.5360$
1.9700 1.9775	1.5361	1.9764	1.5364	Average	1.9768	1.5362
1.9779	1.5367	1.9765	1.5360			

Using values for $1 + \lambda$ of 1.00706 and 1.01035, the molecular weights of carbon dioxide and hydrogen sulphide are 43.998 and 34.081 respectively and the atomic weights of carbon and sulphur 11.999 and 32.065. Batuecas (*J. chim. Phys.*, 1933, 30, 482) discusses this paper critically.

POTASSIUM.—Chlopin and Pasvik-Chlopin (Bull. Soc. chim., 1932, 51, 1227) have compared potassium extracted from peas with common potassium. Potassium perchlorate was precipitated from an extract of the ashes of peas (seed) and was recrystallised. After conversion to chloride this compound was crystallised. For analysis the salt was dried at 400°. The common potassium consisted of a very pure commercial sample. Analysis was effected by precipitating and weighing silver chloride. No corrections to vacuum are made.

	The Atomic	Weight of Potassium	<i>.</i>
Sample.	Wt. of KCl.	Wt. of AgCl.	At. Wt. K.
Ash	0.5211	1.0017	39.11
	0.4632	0.8902	39.08
	0.2949	0.2676	39.01
	0.4894	0.9410	39.09
	0.4871	0.9364	39.10
		Avera	ge 39 ·08
Common	1.0781	2.0724	39.11
	0.6531*	1.2566	39.04
	0.6331	1.2178	39.06
,		Averag	ge 39·07

The two samples are identical within the experimental error. * The original paper gives 0.1531.

Baxter and MacNevin (J. Amer. Chem. Soc., 1933, 55, 3185) have analysed potassium chloride by comparison with silver. Nine samples of salt were prepared by crystallisation as the compounds given in the following table.

Sample Source.	
A. Commercial KClO ₃ (I)	KClO ₃ , KClO ₄ , KCl
B. Commercial KNO	KNO ₃ , KCl
C. Commercial KClO ₃ (II)	KClO ₃ , KClO ₄ , KCl
D_1 and D_2 . Commercial KClO ₃ (I)	KClO ₃ , KClO ₄ , KCl
E. Commercial K ₂ C ₂ O ₄	K ₂ C ₂ Ŏ ₄ , KCl
F. Australian alaunite	KAl(SO ₄) ₂ ·12H ₂ O, KClO ₄ , KCl
G. Stassfurt K ₂ CO ₃	KClÒ ₃ , ŘClO ₄ , KCl
H. Hard wood ash	KNO, KCIO, KCI

The chloride was prepared for weighing by fusion in dry nitrogen with the following exceptions. The first three specimens were fused in air. In the eighth and the eleventh analysis a mixture of nitrogen and hydrogen chloride was used, although this resulted in the attacking of the platinum boat. In the twenty-fifth analysis pure hydrogen was used, and in the twenty-sixth a mixture of hydrogen and hydrogen chloride. The weighed salt was compared with silver in the usual way. Weights are corrected for the buoyancy of the air.

The Atomic Weight of Potassium.

Sample.	Wt. of KCl.	Wt. of Ag.	Ratio KCl : Ag.	At. Wt. of K
A	7.25734	10.50215	0.691034	39.092
Ä	5.92306	8.57121	0.691041	39.093
Ā	6.86340	9.93154	0.691071	39.096
Ā	4.47498	6.47567	0.691045	39.093
Ă	1.93359	2.79802	0.691057	30.004
Ā	2.37502	3.43697	0.691021	39.090
	101001	Ave	rage 0.691045	39.093
в	5.52011	7.98806	0.691045	39.093
Ĩ	5.37543	7.77865	0.691049	39.093
Ē	5.33013	7.71318	0.691042	39.093
_		Ave	rage 0.691045	39.093
С	4.83277	6.99408	0.690980	39.086
Ċ	5.04591	7:30265	0.690970	39.085
Č	5.54960	8.03105	0.691018	39.090
Ċ	4.39910	6:35490	0.690979	39.086
Č	4.53273	6.56001	0.690964	39.084
Č	4.45347	6.44457	0.691042	39.093
Č	7.23597	10.47029	0.691095	39.098
л	6.17999	8.02220	0.601076	20.006
D^1	7.97091	10.59040	0.601059	39 090
$\tilde{\mathbf{D}}^{1}$	4.97145	7.04046	0.601030	20.002
$\tilde{\mathbf{D}}_{1}^{1}$	5.34406	7.73305	0.601068	39 092
D_1	0 01100	Ave	0.091008	39.094
р	6.44977	0.99401	0.001004	20.009
D_{3}	0.44377	9.52401	0.091094	39.098
D_2	5.00950	8.20932	0.691070	39.090
D_{2}	9.99999	8.92839	0.091054	39.094
		Ave	rage 0.691073	39.096
E	5.76754	8.34642	0.691020	39.090
E	4.68776	6.78382	0.691021	39.090
E	5.76684	8.34487	0.691064	39.095
E	4.95265	7.16651	0.691082	39.097
		Ave	rage 0.691047	39.093
\mathbf{F}	4.78080	6.91802	0.691060	39.095
\mathbf{F}	5.39065	7.80054	0.691061	39.095
		Ave	rage 0.691061	39.092
G	5.04247	7.29628	0.691101	39.099
G	4.54922	6.58299	0.691057	39.094
		Ave	rage 0.691079	39.097
н	6.77998	9.81100	0.691029	39.094
H	6.78310	9.81525	0.691078	39.096
		Ave	rage 0.691069	39.095
Average of	of all analyses exc	ept those of Sam	ple C 0.691057	39.094

The final value confirms the lower value obtained by Richards and Staehler and Richards and Mueller some years ago, 39.096, rather than the later one of Hönigschmid and Goubeau, 39.104.

Baxter and Alter (J. Amer. Chem. Soc., 1933, 55, 3270) have analysed the sample of "heavy" potassium obtained by v. Hevesy and Lögstrup (Z. anorg. Chem., 1928, 171, 1).

The Atomic Weight of Potassium.

		Wt. of KCl.	Wt. of Ag.	Ratio KCl : Ag.	At. Wt. of K.
Common	•••••	4.92432	7.12559	0.691075	39.096
		8.76118	12.67767	0.691072	39.096
			Averag	ge 0·691073	39.096
v. Hevesy	••••	5.73312	8.29460	0.691187	39.108
,,		5.77933	8.36128	0.691201	39.110
			Averag	ge 0.691194	39.109

This result is identical with that previously found by Hönigschmid and Goubeau for the same sample of heavy potassium. Hönigschmid and Sachtleben (Z. anorg. Chem., 1933, 213, 365) have confirmed the lower value for potassium by comparison of potassium

chloride and bromide with silver. Several samples of material were purified by crystallisation as the compounds given in the following table :

	-	•
I—III.	Commercial KNO ₃	KNO ₃ , KCl
IV.	Hopflower ash	KH5Č4O6, KNO3, KCl
v.	Commercial KNO ₃	KNO ₂ , KH ₅ C ₄ O ₆ , KCl
VI.	Commercial $K_2C_2O_4$	K ₂ C ₂ Ŏ ₄ , KĊl
VII—X.	Commercial KNO ₃	KNŌ ₃ , KCl

In preparing samples VII—X the conditions of precipitating the chloride from a solution of the nitrate were varied.

After fusion in nitrogen, weighed portions of the chloride were compared with silver,

and the silver chloride was collected. Vacuum weights are given. Analyses with Samples I—III gave the higher value 39·104, owing, in the opinion of the investigators, to the presence of nitrate or some other anion in the fused salt. Lower values were obtained with all the other samples.

		The Ato	omic Weigh	ht of Potas	ssium.		
Sample. IV IV	Wt. of KCl. 4·40001 2·76954	Wt. of Ag. 6·36687 4·00768 Average	Ratio KCl : Ag. 0.691094 0.691058 0.691076	At. Wt. of K. 39.097 39.094 39.096	Wt. of AgCl.	Ratio KCl : AgCl.	At. Wt. of K.
V V V	2.76123 5.14999 4.06210	3·99573 7·45198 5·87777 Average	0·691045 0·691090 0·691095 0·691080	39·093 39·098 39·098 39·098	9·90113 7·80966 Average	$0.520142 \\ 0.520138 \\ 0.520140$	39·099 39·098 39·098
VI VI VI VI	4.62128 3.45462 4.40576 2.52655	6.68711 4.99898 6.37550 3.65615 Average	0.691073 0.691065 0.691046 0.691041 0.691056	39·096 39·095 39·093 39·093 39·093	8.88476	0.520136	39.098
VII VII VII VII	$\begin{array}{c} 4\cdot 12595\\ 2\cdot 99588\\ 3\cdot 23019\\ 5\cdot 06404\end{array}$	5.97030 4.33516 4.67421 7.32794 Average	0.691079 0.691066 0.691067 0.691059 0.691068	39·097 39·095 39·095 39·094 39·095	7·93256 5·75979 6·21015 9·73612 Average	0.520128 0.520137 0.520147 0.520129 0.520135	39·097 39·098 39·099 39·097 39·098
IX IX	3·69668 3·70379	5·34918 5·35946 Average	0.691074 0.691075 0.691075	39·096 39·096 39·096	8-		
X X X	3·99417 3·86909 2·52513 Av	5.77972 5.59866 3.65400 Average verage of all	0.691066 0.691074 0.691059 0.691066 0.691069	39·095 39·096 39·094 39·095 39·096	7·43880 4·85515 Average Average of all	0.520123 0.520093 0.520108 0.520132	39·096 39·092 39·094 39·097

A portion of pure oxalate from Sample VI was converted into bromide by means of pure bromine and the bromide was crystallised. After fusion in nitrogen, the salt was analysed as above.

Th	e Ai	tomic	W	eigh	ıt	of	P	01	assiu	т.
				· · · · · ·						

Wt. of	Wt. of	Ratio	At. Wt.	Wt. of	Ratio	At. Wt.
KBr.	Ag.	KBr : Ag.	of K.	AgBr.	KBr : AgBr.	of K.
5.21776	4.72975	1.103179	39.092	8.23366	0.633711	39.092
6.45421	5.85042	1.103205	39.098	10.18456	0.633722	39.095
3.87157	3.50941	1.103197	39.097	6.10922	0.633726	39.092
6.29952	5.71012	1.103220	39.099	9.94051	0.633722	39.092
3.81822	$3 \cdot 46109$	1.103184	39.096	6.02523	0.633702	39.091
4.04357	3.66236	1.103185	39.096	6.38062	0.633727	39.095
	Average	1.103197	39.091	Average	0.633720	39.094

The average of all the results, 39.096, supports the lower value for potassium found by Richards, Staehler, and Mueller, and by Baxter and MacNevin. For the table of atomic weights the value 39.096 has been adopted.

ČALCIUM.—Kendall, Smith, and Tait (Nature, 1933, 131, 688) have extracted calcium from felspar (Rhiconich, Sutherlandshire, 1000 million years) and pegmatite (Portsoy, Banffshire, 600 million years). Both minerals were rich in potassium and low in calcium.

After fractionation as oxalate, the nitrate was recrystallised and converted into chloride. Two samples of common calcium chloride also were prepared. Comparison with silver followed. Only the final results are given.

	A	.t. Wt. of Ca.	At.	. Wt. of Ca.
R P	hiconich	40·092 40·089	Sea shells Bermuda limestone	40·076 40·077

From these differences the authors calculate the half-life period of K^{41} .

ARSENIC.—Baxter, Sheafer, Dorcas, and Scripture (J. Amer. Chem. Soc., 1933, 55, 1054) have analysed arsenic trichloride and arsenic tribromide by comparison with silver. The compounds were prepared by synthesis from arsenic and the pure halogens, and were subjected to prolonged fractionation in exhausted glass apparatus. Towards the end of each fractionation head and tail fractions were sealed off in glass bulbs for analysis. In the tables the fractions are numbered in the order of decreasing volatility. Samples I and II of tribromide were prepared in identical manner. Sample II of trichloride was subjected to prolonged refluxing over metallic arsenic. Sample III was repeatedly passed over red hot arsenic. Weights are in vacuum.

The Atomic Weight of Arsenic.

		0 1		
$\label{eq:Fraction} Fraction \ of \ AsBr_3.$	Wt. of AsBr ₃ .	Wt. of Ag.	Ratio AsBr ₃ : 3Ag.	At. Wt. of As.
		Sample I.		
8	10.00486	10.29087	0.972207	74.897
9	9.64625	9:92076	0.972330	74.937
7	13.92585	14.32280	0.972285	74.922
		Ave	0.972272	74.919
		Sample II		
10	5.7990.0	5.00007	(0.074969)	(75.506)
10	5·73208 C.C9590	0.88287	(0.974308)	(75.596)
48	0.03938	0.82490	0.072231	74.905
	8.10704	8.33890	0.972235	74.900
40	8.02860	8.25775	0.972250	74.911
23	5.04824	0·19200 5·40011	0.972208	74.897
37	7.27190	7.48011	0.972165	74.883
38	7.70301	7.92309	0.972223	74.902
24	7.55491	7.77056	0.972248	74.910
29	6.49903	6.68459	0.972241	74.908
30	6.14542	6.32150	0.972146	74.877
31	6.74221	6.93490	0.972214	74.899
32	6.80346	6.99845	0.972138	74.875
33	5.84643	6.01362	0.972195	74.893
27	8.16037	8.39376	0.972195	74.893
28	7.54923	7.76488	0.972228	74.904
		Ave	erage 0.972208	7 4 ·897
Fraction of AsCl ₃ .	Wt. of AsCl ₃ .	Wt. of Ag.	Ratio AsCl ₃ : 3Ag.	At. Wt. of As.
		Sample I.		
36	5.58768	9.97651	0.560084	74.895
37	7.75110	$13 \cdot 83860$	0.260102	74.902
56	9.14732	16.33229	0.560078	74.893
39	6.79634	$12 \cdot 13395$	0.260109	74.903
40	6.07547	10.84673	0.560120	$74 \cdot 906$
41	5.07411	9.05925	0.260103	$74 \cdot 901$
53	6.33798	11.31630	0.560075	$74 \cdot 892$
52	6.90994	$12 \cdot 33683$	0.560107	74.902
51	3.93552	7.02561	0.560168	$74 \cdot 922$
49	5.41621	9.66859	0.260186	74.928
45	4.81464	8.59483	0.560179	74.925
43	4.66762	8.33241	0.260126	74.924
46	3.13878	5.60332	0.560164	74.920
		Ave	erage 0.560128	74.909
		Sample II.		
80	4.19732	7.49357	0.560123	74.907
81	4.98056	8.89154	0.260146	74.915
14	4.73909	8.46146	0.560079	74.893
$\overline{15}$	4.15568	7.42009	0.560058	74.886
$\overline{\overline{79}}$	5.15747	9.20770	0.260126	74.908
ič	5.29708	9.45801	0.560063	74.888
		Δ	erage 0.560099	74.900
		1100		17 000

Fract. of AsCl.	Wt. of AsCl _a .	Wt. of Ag.	Ratio AsCl.: 3Ag	At. Wt. of As.
		Sample III		
95	4.04945	o.ooroo	0.500105	74.001
30 96	4.94340	8.82993	0.260102	74.901
30 64	4.82924	8.01491	0.560117	74.901
04	3.84370	0.80240	0.560117	74.905
00	4.28093	7.03173	0.560124	74.908
38	4.01000	8.24800	0.560144	74.914
07	4.01638	7.17073	0.260108	74.902
		Avera	ge 0·560117	74.905
	S	amples II and III.		
50	5.10281	9.10967	0.560153	74.917
52	5.06855	9.04864	0.560145	74.914
55	5.29138	9.44656	0.560138	74.912
56 <i>a</i>	5.67514	10.13182	0.560130	74.909
565	5.14259	9.18110	0.560128	74.909
56c	5.82250	10.39473	0.560140	74.913
		Avera	ge 0.560139	74.912
		Average of	all 0.560122	74.907
Fract. of AsCl.	Wt. of AsCl.	Wt. of AgCl.	Ratio AsCl. : 3AgCl.	At. Wt. of As
	S	amples II and III		
50	5.10991	19,10920	0.491609	74.099
50	5.06955	12 10339	0.421002	74 922
55	5.90138	12.55061	0.421002	74 922
56 <i>a</i>	5.67514	12:46140	0.491586	74 923
564	5.14950	19.10949	0.491576	74 510
500 56c	5.89950	12.81144	0.491571	74 011
000	0 02200	10 01144	0.491500	74 009
		Avera	ge 0.421590	74.917

The average result of all analyses, 74.91, is lower than Krepelka's 74.938 and slightly lower than Aston's 74.919.

Baxter and Shaefer (J. Amer. Chem. Soc., 1933, 55, 1957) have compared arsenic trichloride with iodine pentoxide by hydrolysing weighed quantities of the trichloride with sodium hydroxide in a vacuum. After neutralisation, a solution of a weighed, nearly equivalent quantity of iodine pentoxide was added. The end-point was found in the presence of starch by neutralising with phosphate and adding standard dilute iodine or arsenite solutions. The weight of iodine pentoxide, besides being corrected to vacuum, was subjected to a negative correction for retained moisture of 0.0023 per cent. and to one of 0.001 per cent. for adsorbed air.

The Atomic Weight of Arsenic.

Wt. of	Wt. of	Ratio	At. Wt.	Wt. of Wt	. of Ratio	At. Wt.
AsCl _a .	I205.	$6AsCl_3 : I_2O_5.$	of As.	AsCl ₃ . I ₂	O_5 . 6AsCl ₃ : I_2O_5 .	of As.
7.21705	$2 \cdot 21507$	$3 \cdot 25816$	74.910	21.15293 - 6.49	9218 3·25822	74.913
9.15444	2.80921	$3 \cdot 25872$	$74 \cdot 941$	17.66650 5.42	$2190 3 \cdot 25836$	74.921
10.21968	3.13631	$3 \cdot 25850$	$74 \cdot 929$	18.35205 3.63	$3253 3 \cdot 25822$	74.913
9.66130	2.96521	$3 \cdot 25822$	74.913	14.63971 4.49	9298 3.25835	74.920
17.39861	5.33925	(3.25862)	(74.935)	20.48010 6.28	3471 (3.25872)	(74.941)
17.77941	5.45676	$3 \cdot 25824$	74 914	13.53616 4.13	5364 (3·25887)	(74.949)
20.40160	6.26138	3.25832	74.919	17.51544 - 5.37	7602 `3 ·25807 [´]	`7 4 ·905´
17.17037	5.27036	$3 \cdot 25791$	74.896	17.32860 5.31	874 3.25803	$74 \cdot 903$
21.97776	6.74506	3.25835	$74 \cdot 920$	$18 \cdot 18162 5 \cdot 58$	3033 3.25816	7 4 ·910
21.44152	6.57529	(3.26092)	(75.063)	18.05460 5.54	146 3.25809	74·906
22.11839	6.78901	$3 \cdot 25797$	74.899	Average excluding	paren-	
				thetical results	3.25823	74.914

The average value for the atomic weight of arsenic, excluding the first four analyses which were preliminary and the parenthetical analyses which were subject to known error, is 74.911 (I = 126.917). In view of the concordance of the result of this method and that of the work on the comparison of the arsenic halides with silver, the value for arsenic in the table of atomic weights has been changed from 74.93 to 74.91.

SELENIUM.—Hönigschmid and Kapfenberger (Z. anorg. Chem., 1933, 212, 198) have quantitatively synthesised silver selenide from metallic silver. Selenium dioxide was prepared by oxidation of the metal with nitric acid, and was purified by sublimation in a current of oxygen. By reduction with hydrazine the metal was again obtained, and the above purification was repeated. The elementary selenium was finally dried by sublimation in a current of pure nitrogen.

The synthesis was effected by heating weighed quantities of the purest silver in a current of nitrogen laden with selenium vapour. Excess of selenium was removed by heating first in nitrogen to 300° and then in a high vacuum to 190°. Since a further treatment with selenium vapour followed by removal of excess selenium was found in general to produce no change in the weight of the silver selenide, the authors conclude that the product was normal in composition. Weights are corrected to vacuum.

The Atomic Weight of Selenium.

Wt. of	·Wt. of	Ratio	At. Wt.	Wt. of	Wt. of	Ratio	At. Wt.
Ag.	Ag ₂ Se.	$2 \text{Ag} : \text{Ag}_2 \text{Se}.$	of Se.	Ag.	$Ag_2Se.$	$2Ag : Ag_2Se.$	of Se.
4.70165	6.42241	0.732069	78.966	$4 \cdot 44063$	6.06573	0.732085	78.960
4.88889	6.67806	0.732082	78.961	4.42179	6.04004	0.732080	78.962
4.04602	5.52675	0.732085	78.960	7.15979	9.78012	0.732076	78.964
3.57459	4.88282	0.732075	78.964	6.09006	8.31864	0.732098	$78 \cdot 955$
4.28539	5.85373	0.732079	78.962	6.05372	8.26925	0.732076	78.963
4.79795	6.55384	0.732082	78.961		Average	0.732081	78.962

In view of the fact that Aston (*Proc. Roy. Soc.*, 1931, 132, A, 487) by quantitative estimation of the proportions of the six isotopes has arrived at the value 78.96 for the chemical atomic weight of selenium, it seems highly probable that the value 79.2 heretofore adopted for the International table is too high. It therefore has been replaced in the table for this year by the value 78.96.

INDIUM.—Baxter and Alter (J. Amer. Chem. Soc., 1933, 55, 1943) have analysed indium trichloride and indium tribromide by comparison with silver. Commercial very pure indium was twice subjected to electrolytic transport from a dissolving anode. The product of the first electrolysis still contained traces of impurities, but that of the second when subjected to spectroscopic examination showed no evidence of impurity. After fusion in hydrogen the metal was converted into chloride or bromide by heating in a current of nitrogen and chlorine or bromine in a glass (first two experiments) or quartz tube, and the product was twice sublimed in a current of nitrogen and halogen. The section of the tube containing the salt was sealed off while exhausted. From the volume and weight of the tube the weight in vacuum was obtained. After breaking under a slightly acid solution the glass or quartz was washed and collected and from the weight in vacuum and the weight of the bulb the weight of salt was obtained. Comparison of the solutions with silver followed.

The Atomic Weight of Indium.

Ratio InCl₃: 3Ag.

No. of			Ratio	
electrolyses.	Wt. of InCl ₃ .	Wt. of Ag.	InCl ₃ : 3Ag.	At. Wt. of In.
1	5.64316	8.25759	0.683391	$114 \cdot 802$
1	8.35611	$12 \cdot 22754$	0.683384	114.799
		Average	0.683388	114.801
1	9.65967	$14 \cdot 13582$	0.683347	114.787
1	12.04518	17.62730	0.683325	114.780
1	12.18165	$17 \cdot 82667$	0.683339	114.785
		Average	e 0.683337	114.784
2	5.78802	8.47132	0.683249	114.756
2	$5 \cdot 80139$	8.49079	0.683257	114.758
2	5.58558	8.17470	0.683276	114.764
		Average	e 0.683261	114.759
		Ratio InBr ₃ : 3Ag.		
			Ratio	
	Wt. of InBr ₃ .	Wt. of Ag.	InBr ₃ : 3Ag.	At. Wt. of In.
2	6.38915	5.83299	1.09535	114.750
2	9.07794	8.28699	1.09544	114.782
2	8.91416	8.13810	1.09536	114.755
2	9.24920	8.44420	1.09533	114.745
2	6.22482	5.68250	1.09544	114.779
		Averag	e 1.09538	114.762
		-		

Average of last eight analyses 114.761

The average of the last eight experiments, 114.76, made with material known to be very pure, seems to be nearer the correct value than that heretofore given in the International table.

IODINE.—Guichard (*Compt. rend.*, 1933, 196, 1024) discusses the advantages of the analysis of iodine pentoxide as a method of determining the atomic weight of iodine, and points out that the results of this analysis by Guichard, 126:915, and by Baxter and Butler, 126:905, together with that of Hönigschmid and Striebel, 126:917, by conversion of silver iodide into silver chloride, indicate a value for the atomic weight of iodine lower than the old value in the International table (126:92).

TELLURIUM.—Hönigschmid, Sachtleben, and Wintersberger (Z. anorg. Chem., 1933, 212, 242) have prepared and analysed tellurium tetrabromide. Tellurium was purified by fractional distillation of the metal. The chloride was then prepared and fractionally distilled. From the product tellurium was prepared by reduction and again distilled (Sample I). After conversion into basic nitrate this compound was recrystallised from nitric acid. The metal was again obtained by reduction and three times fractionally distilled in vacuum (Sample II). Sample I contained spectroscopic traces of copper and silver, but Sample II was free from silver and probably also from copper. Tellurium tetrabromide was prepared by distilling bromine upon the metal in a closed vessel filled with nitrogen. Excess of bromine was removed by heating in a current of nitrogen, and the product was then fractionated into glass bulbs in a vacuum, in order to avoid formation of dibromide. The bulbs were weighed in air and under water, broken under a solution of tartaric acid, and the glass was collected on a platinum sponge crucible and weighed. The weight of the tetrabromide was obtained as the difference between the vacuum weights of the bulb and glass.

Comparison of the solution with silver in the usual way followed, and the silver bromide was collected and weighed.

The Atomic Weight of Tellurium.

Preliminary Series.

			T IOIIIII	ary ocrics.			
Sample.	Wt. of TeBr₄.	Wt. of Ag.	Ratio TeBr₄ : 4Ag.	At Wt. of Te.	Wt. of AgBr.	Ratio TeBr₄ : 4AgBr.	At. Wt. of Te.
Ĩ	$2 \cdot 39156$, in the second s	• •		4.01678	0.595392	127.59
Ī	5.07407				8.52222	0.595393	127.59
Ī	2.68834				4.51555	0.595352	127.56
I	1.58285	1.52728	1.03639	127.56			
Ι	$2 \cdot 23181$	2.15354	1.03635	127.54			
I	$2 \cdot 44216$	$2 \cdot 35609$	1.03653	127.62			
		Average	e 1·03643	127.58	Averag	e 0·595382	127.58
			Fina	l Series.			
Ι	3.74734	3.61552	1.03646	127.59	6.29383	0.595399	127.59
I	$3 \cdot 45213$	3.33043	1.03654	127.62	5.79759	0.595442	127.62
I	2.70643	2.61118	1.03648	127.60	4.54571	0.595381	127.58
I	2.51726	2.42877	1.03643	127.58	4.22774	0.595415	127.60
I	3.09138	2.98265	1.03645	127.59	5.19204	0.595408	127.60
I	4.38655	4.23194	1.03653	127.62	7.36692	0.595439	127.62
I	1.96375	1.89456	1.03652	127.62	$3 \cdot 29790$	0.595455	127.63
II	1.86236	1.79680	1.03649	127.60	3.12770	0.595441	127.62
II	4.30945	4.15780	1.03647	127.60	7.23780	0.595409	127.60
II	4.64841	4.48469	1.03651	127.61	7.80641	0.595461	127.64
II	$2 \cdot 48613$	2.39864	1.03648	127.60	4.17530	0.595437	127.62
		Average	1.03649	127.60	Average	e 0·595426	127.61

Hönigschmid (Z. anorg. Chem., 1933, 214, 281) also has quantitatively synthesised silver telluride from weighed quantities of silver. The silver was heated in a current of nitrogen charged with pure tellurium vapour, and the excess of tellurium was removed at elevated temperatures in a vacuum. Normal composition is inferred from the fact that the telluride when heated to constant weight at $500-540^{\circ}$ remains constant in weight when further heated to 620° , although at higher temperatures further loss in weight takes place. Further treatment with tellurium vapour in a similar way failed to alter the weight of the product.

The Atomic Weight of Tellurium.

		Ŭ j		
Wt. of Ag.	Wt. of Ag ₂ Te.	Final Temp.	Ratio Ag, Te: 2Ag.	At. Wt. of Te.
2.00741	3.19464	600° 1	1.59142	127.605
.,	3.19463	560	1.59142	127.605
,,	3.19468	550	1.59144	127.610
$2 \cdot 85653$	4.54586	600	1.59139	127.599
	4.54606	600	1.59146	127.614
3.76928	5.99868	600	1.59147	127.614
3.12566	4.97428	600	1.59143	127.608
••	4.97434	600	1.59145	127.612
	4.97430	600	1.59144	127.609
$3 \cdot 28633$	$5 \cdot 22997$	600	1.59143	127.607
••	5.23010	580	1.59147	127.616
<i>,</i> ,	5.23010	560	1.59147	127.616
	5.23992	550	1.59142	127.605
		Av	erage 1.59145	127.609

This result is essentially identical with that obtained by analysis of tellurium tetrabromide, while Bainbridge from the mass spectrum calculates 127.58. In view of this concordance the value for tellurium in the table is changed from 127.5 to 127.61.

CÆSIUM.—Baxter and Thomas (J. Amer. Chem. Soc., 1933, 55, 858) have compared cæsium chloride with silver using fractionated material which was found spectroscopically to be free from rubidium and potassium. Weights are corrected to vacuum.

The Atomic Weight of Cæsium.

Wt. of	Wt. of	Ratio	At. Wt.	Wt. of	Wt. of	Ratio	At. Wt.
CsCl.	Ag.	CsCl: Ag.	of Cs.	CsCl.	Ag.	CsCl: Ag.	of Cs.
8.96291	5.74296	1.56068	132.91	9.53125	6.10208	1.56069	132.91
9.60983	6.15751	1.56067	132.91	7.52304	4.82025	1.56072	$132 \cdot 91$
9.70288	6.21686	1.56074	132.92		Average	1.56070	132.91

This result is 0.1 unit higher than that obtained by Richards and Archibald and Richards and Francon, but agrees exactly with Aston's corrected value. This value has been adopted for the table.

ERBIUM.—Hönigschmid and Kapfenberger (Z. anorg. Chem., 1933, 214, 97) have prepared and analysed anhydrous erbium chloride, starting with erbium oxide which had been purified by Prandtl (*ibid.*, 1931, 198, 157). This material was subjected to X-ray analysis by both Prandtl and v. Hevesy, and was found to be essentially free from all other rare earths.

The erbium was first several times precipitated as oxalate with intermediate ignition of the oxalate to oxide. After solution of the final product in hydrochloric acid, the chloride was obtained by evaporating and saturating with hydrogen chloride (Sample I). Recovery of material used in the earlier analyses yielded Sample II.

The salt was dehydrated slowly in a current of nitrogen and hydrogen chloride at gradually increasing temperatures up to 450° without melting it, in order to avoid possible losses of chlorine. Analysis by comparison with silver and weighing the silver chloride followed conventional lines. Weights are corrected to vacuum.

The Atomic Weight of Erbium.

	Wt. of	Wt. of	Ratio	At. Wt.	Wt. of	Ratio	At. Wt.
Sample.	ErCl ₂ .	Ag.	ErCl ₃ : 3Ag.	of Er.	AgCl.	ErCl ₃ : 3AgCl.	of Er.
Í	1.88695	$2 \cdot 24872$	0.839122	$165 \cdot 202$	$2 \cdot 98792$	0.631526	165.192
I	1.98625	$2 \cdot 36703$	0.839132	$165 \cdot 206$	3.14516	0.631526	165.192
I	$2 \cdot 30845$	2.75114	0.839089	165.192	3.65527	0.631340	165.198
I	2.93390	$3 \cdot 49630$	0.839144	$165 \cdot 210$	4.64550	0.631557	$165 \cdot 206$
I	$2 \cdot 89514$	$3 \cdot 45006$	0.839156	$165 \cdot 214$	4.58401	0.631574	$165 \cdot 213$
II	3.18253	3.79248	0.839169	$165 \cdot 217$	5.03906	0.631572	$165 \cdot 212$
II	3.05257	3.63780	0.839125	$165 \cdot 204$	4.83354	0.631539	165.198
		Average	0.839134	$165 \cdot 206$	Average	0.631551	165.202

In view of the fact that Baxter and Chapin (J. Amer. Chem. Soc., 1911, 33, 22) found 0.003 per cent. water in neodymium chloride which had been dried in an exactly similar fashion, it seems likely that the above results are subject to a small uncertainty from this source.

The value $165 \cdot 2$ is $2 \cdot 2$ units lower than the value $167 \cdot 46$ previously found by Boss and Hopkins. The committee has refrained from changing the value in the table, O. Hönigschmid being occupied with another investigation starting with an erbium oxide prepared recently by Prandtl.

YTTERBIUM.—Hönigschmid and Striebel (Z. anorg. Chem., 1933, 212, 385) have analysed ytterbium chloride prepared from oxide which had been purified by Prandtl (*ibid.*, 1932, 209, 13), and which showed evidence of great purity when subjected to X-ray analysis. The preparation of the salt for weighing and the analysis followed closely the method already described in the case of erbium. Fusion was found impossible owing to dissociation of the salt. The material used in the analyses of Sample I was repurified for the analyses of Sample II. Weights are corrected to vacuum.

The Atomic Weight of Ytterbium.

				v			
	Wt. of	Wt. of	Ratio	At. Wt.	Wt. of	Ratio	At. Wt.
Sample.	YbCl ₃ .	Ag.	YbCl ₃ : 3Ag.	of Yb.	AgCl.	YbCl ₃ : 3AgCl.	of Yb.
Ĺ	2∙074ľ0	2.40252	0.86329	173.025	3.19202	0.64977	173.037
I	1.71782	1.98986	0.86329	173.023	2.64378	0.64976	173.033
I	1.81933	$2 \cdot 10732$	0.86334	173.040	2.79979	0.64981	173.054
I	2.33706	2.70695	0.86336	173.045	3.59653	0.64981	173.054
I	2.31349	2.67968	0.86332	173.042	3.56054	0.64976	173.032
I	2.78037	3.22053	0.86333	173.036	4.27915	0.64975	173.029
II	2.08726	2.41783	0.86328	173.020	3.21248	0.64973	173.022
II	1.81001	2.09650	0.86332	173.043	2.78551	0.64979	173.048
II	$2 \cdot 53341$	2.93447	0.86333	173.036	3.69895	0.64972	173.038
		Average	e 0·86332	173.037	Averag	e 0.64977	173.039

From the standpoints of purity of material and suitability of method, this investigation seems superior to earlier work on ytterbium. Therefore the value 173.04 has been adopted for the table. Auer von Welsbach obtained the value 173.0, while Blumenfeld and Urbain found 173.5.

OSMIUM.—Gilchrist (U.S. Bureau of Standards Journal of Research, 1932, 9, 279) has determined the percentage of osmium in ammonium chloro-osmate and ammonium bromoosmate. Osmium was freed from other platinum metals by two distillations as tetroxide from nitric acid solution. The metal, obtained by electrolysis, was oxidised to tetroxide and then reduced by boiling with pure hydrochloric or hydrobromic acid to chloro-osmic or bromo-osmic acid. Precipitation as the ammonium salts followed, and the salts were recrystallised, except in the case of ammonium chloro-osmate Sample II. After being dried over phosphorus pentoxide, the salts were prepared for weighing by prolonged heating to constant weight at about 150° .

The weighed salt was reduced in a current of pure hydrogen, the final temperature, 700-725°, being maintained long enough to secure constant weight of the resulting metal. Removal of hydrogen from the reduction tube by a current of nitrogen was found necessary in order to avoid oxidation when the metal was exposed to the air. Weights are corrected to vacuum.

	I ne Ai	tomic Weight of Os	smium.	
Sample.	Wt. of $(NH_4)_2OsCl_6$.	Wt. of Os.	$(NH_4)_9OsCl_6$.	At. Wt. of Os.
1	3.81131	1.65758	0.43491	191.20
1	3.46016	1.50505	0.43496	191.54
1	1.11090	0.48320	0.43497	191.55
		Average	0.43495	191.53
2	7.80602	3.39547	0.43499	191.56
2	7.21775	3.13949	0.43496	191.54
2	7.04888	3.06644	0.43202	191.58
2	7.54170	3.27946	0.43484	191.44
		Average	0.43495	191.53
		Average of all	0.43495	191.53
1	5.85596	1.58647	0.27091	191.57
1	5.59080	1.51471	0.27093	191.59
1	3.91834	1.06117	0.27082	191.48
		Average	0.27089	191.55
2	4.98331	1.35016	0.27093	191.59
2	4.53546	1.22899	0.27097	191.63
		Average	0.27095	191.61
		Average of al	1 0.27091	191.57

Since this work seems superior to earlier work on osmium, the value 191.5 has been adopted for the table of atomic weights.

THALLIUM.—Baxter and Thomas (J. Amer. Chem. Soc., 1933, 55, 2384) have compared thallous chloride with silver. Thallous sulphate was several times recrystallised and con-

verted to chloride. The chloride was then recrystallised. Sample A contained a spectroscopic trace of silver introduced accidentally. Sample B was found by spectroscopic examination to be free from the impurities contained in the original thallium. Sample C, the purest, was not examined spectroscopically. The salt was prepared for weighing by distillation in nitrogen and refusion in nitrogen. In the third analysis the final fusion atmosphere was air. Comparison with silver followed the conventional lines. Weights are corrected to vacuum.

	I he Ato	omic weight of 1	naurum.	
Sample TlCl.	Wt. of TlCl.	Wt. of Ag.	Ratio TlCl : Ag.	At. Wt. of Tl.
Â	6.03004	2.71269	(2.22290)	(204.349)
Α	7.16504	$3 \cdot 22265$	$2 \cdot 22334$	$204 \cdot 397$
Α	7.26645	$3 \cdot 26832$	$2 \cdot 22330$	204.393
В	11.54708	5.19357	$2 \cdot 22334$	204.391
В	11.94726	5.37358	$2 \cdot 22333$	204.396
В	9.87039	$4 \cdot 43931$	$2 \cdot 22341$	$204 \cdot 404$
В	$13 \cdot 11388$	5.89818	$2 \cdot 22338$	204.401
С	8.97358	4.03636	$2 \cdot 22319$	204.381
С	9.71404	4.36898	$2 \cdot 22341$	$204 \cdot 404$
С	10.23369	4.60270	$2 \cdot 22341$	204.404
В	12.79964	5.75681	$2 \cdot 22339$	204.402
С	9.97133	4.48459	$2 \cdot 22347$	$204 \cdot 411$
	Average	e excluding Analys	sis 1 2·22336	204.399

The result, 204.40, confirms the work of Hönigschmid, Birckenbach, Kother, and Striebel, who found 204.39, and of Aston, 204.39, but is higher than that found by Briscoe, Kikuchi, and Peel, 204.34.

LEAD.—Several determinations of the atomic weight of lead from radioactive minerals have appeared. Baxter and Alter (J. Amer. Chem. Soc., 1933, 55, 1445) extracted lead from cyrtolite occurring in Bedford, New York, U.S.A. This mineral was nearly if not quite free from thorium. Purification included precipitation as sulphide, as chromate, and as sulphate, crystallisation as nitrate and chloride, and distillation in dry hydrogen chloride. Lead from Swedish kolm was similarly purified. Common lead was crystallised as nitrate and as chloride. Analysis of the lead chloride was effected by comparison with silver. Weights are in vacuum.

In a later investigation (*ibid.*, p. 2785) lead was obtained from Katanga pitchblende by extracting the yellow secondary product with hydrochloric acid, and then the lead in the primary pitchblende was obtained. Both samples were purified in essentially the manner already described. For comparison a new determination with the Bedford sample was carried out as well as two with common lead. For convenience analyses with the same sample are grouped together.

	1 //0 11/0		Louis.	
Sample.	Wt. of PbCl ₂ .	Wt. of Ag.	Ratio PbCl ₂ : 2Ag.	At. Wt. of Pb.
Common	2.47843	1.92274	1.28901	$207 \cdot 203$
	$2 \cdot 80252$	2.17402	1.28908	207.218
	2.56818	1.99234	1.28903	$207 \cdot 207$
	4.34481	3.37020	1.28907	207.216
		Av	verage 1.28905	$207 \cdot 211$
Kolm Cyrtolite	$3 \cdot 42063$	2.66515	1.28347	206.007*
5	0.99965	0.77906	1.28315	205.938
	0.99219	0.77325	1.28314	205.936
	0.76907	0.59946	1.28294	$205 \cdot 893$
	0.73596	0.57358	1.28310	205.928
	0.59044	0.46012	1.28315	$205 \cdot 938$
		Av	verage 1.28310	205.927
Katanga Pitchblende	2.62575	2.04615	1.28326	205.962
extract	3.75342	2.92474	1.28333	205.977
	3.28327	2.55867	1.28327	205.964
	3.19222	2.48745	1.28333	205.977
		Av	verage 1.28330	205.970
Katanga Pitchblende	4.57229	3.56261	1.28341	205.995
8	6.20083	4.83143	1.28344	206.001
	4.45460	$3 \cdot 47094$	$1 \cdot 28340$	205.992
		Av	verage 1.28342	205.996

The Atomic Weight of Lead.

* Baxter and Bliss found 206.013 (J. Amer. Chem. Soc., 1930, 52, 4848).

Hönigschmid, Sachtleben, and Baudrexler (Z. anorg. Chem., 1933, 214, 104) also have worked with lead samples obtained from uranium ores. The procedures of purification and analysis seem to have followed closely those outlined above.

			(Common.				
Wt. of	Wt. of	Ratio	At. Wt.		Wt. of	Wt. of	Ratio	At. Wt.
PbCl ₂ .	Ag. P	$^{\mathrm{bCl}_{2}}: 2\mathrm{Ag}.$	of Pb.		$PbCl_2$.	Ag.	$PbCl_2: 2Ag.$	of Pb.
4.11815	3.19483	1.28900	$207 \cdot 202$		3.90714	3.03113	1.28900	207.202
4.11159	3.18947	1.28911	207.225		3.35776	2.60494	1.28900	207.200
3.53084	2.73927	1.28897	207.196		5.13712	3.98519	1.28905	207.212
4.91028	$3 \cdot 80923$	1.28905	$207 \cdot 211$		5.64511	4.37935	1.28903	207.207
2.99549	2.32378	1.28906	207.214			Avera	ge 1·28903	207.208
			Morog	oro Ura	ninite.			
Wt. of	Wt. of	Rat	io	At. Wt.	Wt.	of	Ratio	At. Wt.
PbCl ₂ .	Ag.	PbCl _a :	2Ag.	of Pb.	AgC	l. Pb	Cl., : 2AgCl.	of Pb.
3.53584	2.75474	1.28	355	206.024	3.660	03	0.966069	206.033
2.90725	$2 \cdot 26502$	1.28	354	206.023	3.009	24	0.966108	206.044
3.58682	2.79436	1.28	359	206.034	3.712	86	0.966053	206.028
2.95643	$2 \cdot 30324$	1.28	360	206.035	3.060	12	0.966116	206.046
3.33674	2.59956	1.28	358	206.031	3.423	79	0.966110	206.045
3.81379	2.97121	1.28	358	206.032	3.947	73	0.966072	206.034
3.40615	2.65356	1.28	360	206.036	3.525	64	0.966100	206.042
2.91617	2.27187	1.28	360	206.035	3.018	54	0.966086	206.038
2.56153	1.99561	1.28	358	206.032				
2.62269	2.04323	1.28	360 -	206.036	2.714	81	0.966068	206.033
	Av	rerage 1.28	358	206.032	I	Average	0.966086	206.038
			Kata	nga Curi	ite.			
2.70844	$2 \cdot 11006$	1.28	358	206.032				
2.73861	2.11361	1.28	355	206.026				
2.91250	$2 \cdot 26912$	1.28	354	206.022				
5.67156	4.41839	1.28	363	206.041				
6.13816	4.78194	1.28	361	206.038	6.323	68	0.966079	206.036
5.58752	4.35310	1.28	859	206.030				
6.93922					7.183	85	0.966044	206.026
	Ave	erage 1.283	58	206.031		Average	0.966062	206.031
		Hydrochlo	ric Acid	Extract of	of Katang	a Pitchbl	ende.	

2.81263	2.19143	1.28347	206.007			
3.08813	$2 \cdot 40591$	1.28356	206.027			
4.90560	$3 \cdot 82191$	1.28355	206.024	5.07791	0.966067	206.032
	Average	1.28353	206.020	Average	0.966067	206.032

It is interesting that both groups of investigators find common lead to have the atomic weight 207.21, a value 0.01 unit lower than that in the International table.

Cawood and Patterson (J., 1933, 619) have determined experimentally the compressibilities of ethylene, carbon dioxide, nitrous oxide, sulphur dioxide, and methyl ether at pressures between 1 and 3 metres and at various temperatures. Within the error of the experiments, the isothermals were found to be straight lines. Since $\log \frac{d}{d\phi}$ when plotted against log T gave straight lines, the value of $1 + \lambda$ for SO₂ was found by extrapolation from the values at 30° and 50°, 1.01681 and 1.01340 respectively, to be 1.0249. Molecular and atomic weights are calculated from these values and mean values of the densities.

	$1 + \lambda$.	Density.	Observers.	Mol. wt.	
0,	1.00094	1.42896	Baxter and Starkeweather	32.000	
C ₂ H ₄	1.00732	1.2606	Leduc, Stahrfoss, Batuecas, Stock, and Ritter	28.051	C = 12.010
CO ₂	1.00668	1.9767	Leduc, Rayleigh, Guye, Guye and Pintza	44.014	C = 12.014
SO ₂	1.0249	2.9265	Jacquerod and Scheuer, Baume, Cooper, and Maas	64.004	S = 32.00
N ₂ O (C ₂ H ₅) ₂ O	$1.00714 \\ 1.02811$	1.9777 2.1100	Leduc, Rayleigh, Guye and Pintza, Baume, Maas, and Russell	$44.016 \\ 46.003$	N = 14.008 C = 11.98

512 Atomic Weights of the International Union of Chemistry.

TANTALUM and NIOBIUM.—Aston (*Nature*, 1932, 130, 130), using the mass spectrograph, finds tantalum and niobium to be probably simple elements with the atomic weights 180.89 and 92.90 respectively. The large differences between these values and those in the table indicate the advisability of obtaining further estimations of the atomic weight of Ta and Nb by chemical methods.

G. P. BAXTER,	Chai r man.
Mme. P. CURIE.	P. LEBEAU.
O. HÖNIGSCHMID.	R. J. MEYER.

ATOMIC WEIGHTS, 1934.

	Sym-	At.			Sym-	At.	
	Ďol.	No.	At. wt.		Ďol.	No.	At. wt.
Aluminium	A1	13	26.97	Neodymium	Nd	60	144.27
Antimony	Sh	51	121.76	Neon	Ne	10	20.183
Argon	Ă	18	39.944	Nickel	Ni	28	58.69
Arsenic	As	33	74.91	Niobium	Nb	20	00 00
Rarium	Ba	56	137.36	(Columbium)	(Ch)	41	93.3
Bervllium	Be	4	9.02	Nitrogen	N N	7	14.008
Bismuth	Bi	83	209.00	Osmium	n.	76	191.5
Boron	B	5	10.82	Oxygen	03	8	16.0000
Bromine	Br	35	79.916	Palladium	ЪЧ	46	106.7
Codmium	Cd	48	119.41	Phosphorus	P	15	31.02
Cadimum	Ca	55	139.01	Platinum	D+	78	105.23
Calcium	C_{2}	20	40.08	Potassium	ĸ	10	30.006
Carbon	Ca	20	19.00	Proseedumium	Dr	50	140.02
Carbon	Č	58	140.13	Radium	Ro	09 88	995.07
Chloring		17	35.457	Radon	Rn	86	220.91
Chromium		94	59.01	Rhanium	Ro	75	186.21
Cobalt		24 97	58.04	Rhodium	Ph	45	109.01
Coppor		21	62.57	Rubidium	Rh	40 27	102·91 85.44
Deservation	Dr	29 66	169.46	Rubiunum Puthonium	Du	37	101.7
Dyspiosium	Dy E	00	102.40	Somorium	Ku Sm	44 60	150.49
El Diulli	Ei Eu	00 69	159.0	Samanum	Sill	02	150.45
Europium	Eu E	03	10.00	Scandium	50	21	40.00
Cadalinium		9 61	19.00	Selellium	5e c:	04 14	18.90
Gadonnium	Gu	04	107.0	Silicon		14	20.00
Gamun	Ga	21	09.12	Silver	Ag	4/	107.880
Germanium	Ge	32	12.00	Socialiti	INA Sm	11	22.997
Gold	Au	79	197.2	Strontium	Sr	38	87.63
Hainium	HI	72	178.0		S T.	10	32.06
Helium	не	Z	4.002			73	181.4
Holmium	HO	67	103.5			52	127.61
Hydrogen	H	1	1.0078	Terbium		65	159.2
	In	49	114.76	Thallium		81	204.39
	I T	53	126.92	Thorium	In	90	232.12
	Ir	77	193.1	Thulium	Im	69 20	169.4
Iron	Fe	26	55.84	1 in	Sn	50	118.70
Krypton	Kr	36	83.7	Intanium	11	22	47.90
Lanthanum	La	57	138.92	Tungsten	W	74	184.0
Lead	Pb	82	207.22	Uranium	U	92	238.14
Lithium	Lı	_3	6.940	Vanadium	V	23	50.95
Lutecium	Lu	71	175.0	Xenon	Xe	54	131.3
Magnesium	Mg	12	24.32	Ytterbium	Yb	70	173.04
Manganese	. Mn	25	54.93	Yttrium	Y	39	88.92
Mercury	Hg	80	200.61	Zinc	Zn	30	65.38
Molybdenum	. Mo	42	96.0	Zirconium	Zr	4 0	91.22